当前位置:首页 > 翻译资源

橡胶特性的测试方法-中英对照

发布时间:2013-1-1      阅读次数:1659

橡胶特性的测试方法-中英对照

本标准是在依据故有标准D 1415发行的;名称后面的数字表明最初版本的出版年或,如有修订版则指修订版的发行年。
括号里的数字代表最终审批年。上标的希腊字幕ε代表在最终修改或复核时的变更。
本标准已经得到国防部机构批准。
2.2 国际标准:3
1.1 本测试方法涵盖了硫化或热塑性橡胶的硬度测试程序。通过在规定尺寸的小球上以(1)使用较小的初始力和(2)使用大得多的尾力所获得不同透深之间的差异测得硬度。在指定的时间内进行差别渗透并转化为硬度指标值。
1.2 本测试方法与标准ISO 48在技术上是相似的。
1.3 本标准并未列出全部安全注意事项,如果有其他安全标准,请结合运用。本标准的使用者有义务建立适合的安全和健康条例并在使用之前列出各项常规限制。
2. 参考标准
2.1 ASTM 标准:2
D 1349 橡胶的操作规程—标准的测试温度
D 1415 橡胶特性的操作方法—国际硬度
D 2240 橡胶特性的测试方法—硬度计硬度
D 4483 橡胶和碳黑制造工业中,测试方法标准的准确性评估
1本测试方法是在ASTM协会D11橡胶及其分会D11.10物理测试权限之下的。
现有的版本审批于2005年8月15日,出版于2005年8月。最初的版本审批于1956年。最新的版本审批于2004年,名为:D 1415–88 (2004)。
2 有关ASTM标准的参照内容可以访问ASTM网站, 或发邮件至ASTM 客服邮箱有关ASTM标准年鉴信息,请咨询ASTM网站标准文件概要页面。
 
ISO 48 橡胶, 硫化的或热塑性的—硬度的测定 (硬度在 10 至 100
IRHD之间)
3. 测试方法摘要
3.1 在一个平面上,为了适应不同的尺寸,硬度的硫化或热塑性橡胶样品给出了以下四种测试程序:
类型S1和S2, 标准硬度测试;
类型M, 显微硬度测试;
类型L, 低硬度测试;
类型H, 高硬度测试.
3.1.1 类型 S1和 S2 (参考 表 1)—在第6部分所列厚度的样品使用的标准测试,且适用于硬度在35 IRHD至85 IRHD之间的样品。也可能适用于硬度在30 IRHD至95 IRHD之间的样品。
备注  1—在85 IRHD至95 IRHD 和30 IRHD至35 IRHD的硬度范围内,通过类型S和S1所获得的硬度值可能与使用类型H或L获得的值不一致。非重大差异一般可以忽略不计。
3.1.2 类型M (参考 表 1)—显微硬度测试是类型S1和S2的缩尺表示,它可用于更薄更小的样品。可用于第6部分所列出的厚度,且硬度在35 IRHD至85 IRHD之间。还可以用于硬度在30 IRHD至95 IRHD之间的样品。
备注 2—由于表面变化或样品配置的不同,通过类型M获得的硬度值可能与类型S1或S2的不同。
3 可从美国国家标准协会获取(ANSI), 25 W. 43rd St, 4th Floor, New York, NY 10036.
本标准的著作权©归美国100 Barr Harbor Drive ,West Conshohcken ,PA 19428的ASTM所有。
D 1415 – 05
表1 仪器要求
备注—在类型M的显微硬度测试中,使用弹簧在测试仪器内紧压测试件,底部施加的力的数值即为总的成穴力。在成穴力增加0.145N前,底部的力大于这个数字,因此为0.38+0.03N。
球直径,
毫米
球上次要力,
NA
球上的主要力,
NA
球上的总力,
NA
底部外径
, mm
底部内径
, mm
对底部施加的力, NB
类型 S1
2.38 + 0.01
0.30 +0.02
5.23 + 0.01
5.53 + 0.03
20 + 1
6 + 1
8.3 + 1.5
类型 S2
2.50 +0.01
0.29 + 0.02
5.4+ 0.01
5.7 + 0.03
20 + 1
6 + 1
8.3 + 1.5
类型 M
0.395 + 0.005
0.0083 + 0.0005
0.1455 + 0.0005
0.153 + 0.001
3.35 + 0.15
1.00 + 0.15
0.235 + 0.03C
类型 L
5.0 + 0.01
0.3 + 0.02
5.4 + 0.01
5.7 + 0.03
22 + 1.0
10 + 1.0
8.3 + 1.5
类型 H
1.0 + 0.01
0.3 + 0.02
5.4 + 0.01
5.7 + 0.03
20 + 1.0
6 + 1.0
8.3 + 1.5
A 包括仪器的摩擦力
B 该力应在底部实际面积的限制范围内进行调节,以便样品的压力为:30 + 0.5 kPa.
C 当在球上施加全部力时,在底部上的力;当在球上施加次要力时,在底部上的力最小 0.2 N,最大 0.4 N。
3.1.3 类型 L—第6部分中列出厚度的样品所适合的方法,且硬度在10 IRHD 与35 IRHD之间。 
3.1.4 类型 H—第6部分中列出厚度的样品所适合的方法,且硬度在85 IRHD 与100 IRHD之间。
3.2 在全部过程中,以国际橡胶硬度(IRHD)计算的硬度都是来源于渗透差异和表或图,在显微测试程序中,首先要将渗透差异乘以系数6,但也可直接将仪器调整成为IRHD单位制。
4. 重要性与使用
4.1 国际硬度测试基于在规定条件下,对硬球在橡胶样品中的渗透深度进行测量。测得的渗透深度再转化成为IRHD单位,选择比例,0代表材料的弹性模量为0,且100%代表材料有无限的弹性模量。
4.1.1 在大多数正常硬度范围内,比例也满足以下条件:1 IRHD 范围代表大约杨氏模量中的相同比例差异,且橡胶硫化产品在正常的弹性范围内,当测试标准样品时,IRHD的读数可与类型A的硬度计(测试方法D 2240)读数做比较。
4.1.1.1 术语“弹力的常规范围”用于将高速应力松弛或变形滞后作用的合力排除在外。对于此种复合力,在两种硬度测试上停留时间的不同会导致硬度值的差异(测试方法D2240和D 1415)。当测试曲面的或非常规形状的测试样品时,读数是没有可比性的。
4.1.2 对于各向同性弹性材料,如:天然硫化橡胶,IRHD的硬度与杨氏模量关系已知,但对于塑料或各向异性的橡胶,与杨氏模量的关系还不够清楚。
4.1.3 渗透差异与以IRHD表示的硬度之间的关系是基于以下计        算原则的:
4.1.3.1 对于良好的各向同性弹性材料,渗透和杨氏模量之间的关系4如如下:
F/M=1.9 R2(P/R)1..35 (1)
其中:
F = 成穴力,
M = 杨氏模量, MPa,
R = 球半径, 毫米, 与
P =渗透深度,毫米.
4.1.3.2 使用概率单位(整体正常误差)曲线相关的log10M和IRHD的硬     度。如图1所示。曲线定义如下:
4.1.3.3 log10M的值与曲线中点对应,等于0.364,即:M =2.31Pa或
4.1.3.4 最大的斜率等于每单位增加57 IRHD,以log10M表示。
5. 仪器
5.1 以下列出必须使用的部分仪器,适合的尺寸和负载在表1中列出:
5.1.1 立式柱塞,  终止于硬球。
5.1.2 施力器, 用于给球施加次要力和主要力,柱塞以及上附装置的   质量和弹簧所施加的力上,都应被包含在测定次要力和主要力之内。这是为了测量按规定实际施加在球上的力。
5.1.3 测量装置—一个机械的,光学的,或电器装置,使用标准   的长度段位或在施加主要负载力时,用IRHD单位对柱塞的渗透深度的增加进行测量
5.1.4 底部—一个平的环形底部牢牢固定在渗透测量装置上,  
4本关系是一种近似关系,且可作为一种指示或暗示、
INTERNATIONAL
Designation: D 1415-05
Standard Test Method for
Rubber Property—International Hardness1
This standard is issued under the fixed designation D 1415; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an  editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope
1.1 This test method covers a procedure for measuring the hardness of vulcanized or thermoplastic rubber. The hardness
is obtained by the difference in penetration depth of a specified dimension ball under two conditions of contact with the rubber:
(1) with a small initial force and (2) with a much larger final force. The differential penetration is taken at a specified time
and converted to a hardness scale value.
1.2 This test method is technically similar with ISO 48.
1.3 This standard does not purport to address all of the safety concerns,  if any, associated with its use. It is th
responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents
2.1 ASTM Standards: 2
D 1349 Practice for Rubber—Standard Temperatures for Testing D 1415 Test Method for Rubber Property—International
Hardness D 2240 Test  Method  for  Rubber  Property—Durometer Hardness D 4483 Practice for Evaluating Precision for Test Method
Standards in the Rubber and Carbon Black Manufacturing Industries
1 This test method is under the jurisdiction of ASTM Committee D11 on Rubber
and is the direct responsibility of Subcommittee D11.10 on Physical Testing.
Current edition approved Aug. 15, 2005. Published August 2005. Originally approved in 1956. Last previous edition approved in 2004 as D 1415-88 (2004).
2 For referenced ASTM standards, visit the ASTM website,  or
contact ASTM Customer Service. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on
the ASTM website.
2.2   International Standard:3
ISO    48 Rubber,    Vulcanized    or    Thermoplastic Determination of Hardness (Hardness between 10 and 100
IRHD)
3. Summary of Test Methods
3.1 Four procedures are given to accommodate specimens of different dimensions hardness of vulcanized or thermoplas¬tic rubbers on flat surfaces:
Type S1 and S2, Standard hardness tests; Type M, Micro-hardness tests; Type L, Low hardness test; Type H, High hardness test.
3.1.1 Types S1 and S2 (refer to Table 1)—The standard test for hardness is the appropriate method for specimens having a
thickness described in Section 6, and is appropriate for those having a hardness of 35 IRHD to 85 IRHD. It may be used for
those in the range of 30 IRHD to 95 IRHD.
NOTE 1—The hardness values obtained by Types S and S1, within the ranges of 85 IRHD to 95 IRHD and 30 IRHD to 35 IRHD may not agree with those obtained using Types H or L. The differences are not generally considered significant.
3.1.2 Type M (refer to Table 1)—The micro-hardness test is a scaled-down version of Type S1 and S2, which permit testing
of thinner and smaller specimens. It is applicable for specimens having a thickness described in Section 6, and a hardness of 35
IRHD to 85 IRHD. It may be used for those in the range of 30 IRHD to 95 IRHD.
NOTE 2—The hardness values obtained by Type M may not agree with those obtained using Types S1 or S2 due to the effects of surface variations or specimen configuration.
3 Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
D 1415-05
TABLE 1 Apparatus Requirements
NOTE—In Type M micro-hardness testing using instruments in which the test piece table is pressed upwards by a spring, the value of the force on foot is that

acting during the period of application of the total indenting force. Before the indenting force increment of 0.145 N is applied, the force on the foot is greater by this amount, and hence is 0.38 6 0.03 N.
 Type S1 Type S2 Type M Type L Type H
Diameter of ball, 2.38 6 0.01 2.50 6 0.01 0.395 6 0.005 5.0 6 0.01 1.0 6 0.01
mm     
Minor force on ball, 0.30 6 0.02 0.29 6 0.02 0.00836 0.0005 0.3 6 0.02 0.3 6 0.02
NA     
Major force on ball, 5.23 6 0.01 5.4 6 0.01 0.1455 6 0.0005 5.4 6 0.01 5.4 6 0.01
Total force on ball, 5.53 6 0.03 5.7 6 0.03 0.153 6 0.001 5.7 6 0.03 5.7 6 0.03
NA     
Outside diameter of 20 6 1 20 6 1 13.356 0.15 22 6 1.0 20 6 1.0
foot, mm     
Inside diameter of 6 6 1 6 ± 1 11.006 0.15 10 6 1.0 6 6 1.0
foot, mm     
Force on foot, NB 8.3 6 1.5 8.3 6 1.5 0.2356 0.03C 8.3 6 1.5 8.3 6 1.5
A Includes frictional forces in apparatus.
BThe force should be adjusted within these limits to the actual area of the foot so that the pressure in the specimen is 30 6 0.5 kPa.
C Force on foot during application of total force on ball; force on foot during application of minor force on ball, 0.2 N minimum, 0.4 N maximum.
 
3.1.3 Type L—The appropriate method for specimens having a thickness described in Section 6, and a hardness of 10
IRHD to 35 IRHD.
3.1.4 Type H—The appropriate method for specimens having a thickness described in Section 6, and a hardness of 85
IRHD to 100 IRHD.
3.2 In all procedures, the hardness in International Rubber Hardness Degrees (IRHD) is derived from the difference in penetrations and a table or graph constructed from the table. In the micro-tester procedure, the difference in penetration must first be multiplied by scale factor 6. Alternatively, the penetration measuring instrument may be calibrated directly in IRHD.
4. Significance and Use
4.1 The International Hardness test is based on measure¬ment of the penetration of a rigid ball into the rubber specimen under specified conditions. The measured penetration is con¬verted into IRHD, the scale of degrees being so chosen that 0 represents a material having an elastic modulus of zero, and 100 represents a material of infinite elastic modulus.
4.1.1 The scale also fulfills the following conditions over most of the normal range of hardness:  one IRHD range
represents approximately the same proportionate difference in Young's modulus, and for rubber vulcanizates in the usual
range of resilience, readings in IRHD are comparable with
those given by a Type A durometer (Test Method D 2240)
when testing standard specimens.
4.1.1.1 The term "usual range of resilience" is used to exclude those compounds that have unusually high rates of stress relaxation or deformational

hysteresis. For such com¬pounds, differences in the dwell time in the two hardness tests (Test Methods D 2240 and D 1415) result in differences in hardness

values. Readings may not be comparable when testing curved or irregularly shaped test specimens.
4.1.2 For substantially elastic isotropic materials like well-
vulcanized natural rubbers, the hardness in IRHD bears a
known relation to Young's modulus, although for markedly
plastic or anisotropic rubbers the relationship will be less
precisely known.
4.1.3 The relation between the difference of penetration and the hardness expressed in IRHD is based on the following:
4.1.3.1 The relation4 between penetration and Young's modulus for a perfectly elastic isotropic material:
(1)
F/M 5 1.9 R2~P/R!1.35
where:
F     =  indenting force,
M    =  Young's modulus, MPa,
R     = radius of ball, mm, and
P     = penetration, mm.
4.1.3.2 Use of a probit (integrated normal error) curve to
relate log10 M and hardness in IRHD, as shown in Fig. 1. This
curve is defined as follows:
4.1.3.3 The value of log10 M corresponding to the midpoint
of the curve is equal to 0.364, that is, M = 2.31 MPaor335psi.
4.1.3.4 The maximum slope is equal to 57 IRHD per unit
increase in log10 M.
5. Apparatus
5.1 The essential parts of the apparatus are as follows, the appropriate dimensions and loads being given in Table 1:
5.1.1 Vertical Plunger, terminating in a rigid ball.
5.1.2 Force Applicator, for applying a minor force and a major force to the ball, the mass of the plunger, and of any
fittings attached to it, and the force of any spring acting on it shall be included in determining the minor and major forces.
This is in order that the forces actually applied to the ball shall be as specified.
5.1.3 Measuring Device—A mechanical, optical, or electrical device graduated either in standard units of length or in
IRHD for measuring the increase in depth of penetration of the plunger caused by the major load.

武汉翻译公司

2013.1.1 

  返回>>Top
-x